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Results from the Lax-Phillips Scattering Theory are used to analyze quantum mechan-
ical scattering systems, in particular to obtain spectral properties of their resonances
which are defined to be the poles of the scattering matrix. For this approach the inter-
play between the positive energy projection and the Hardy-space projections is decisive.
Among other things it turns out that the spectral properties of these poles can be de-
scribed by the (discrete) eigenvalue spectrum of a so-called truncated evolution, whose
eigenvectors can be considered as the Gamow vectors corresponding to these poles. Fur-
ther an expansion theorem of the positive Hardy-space part of vectors Sg (S scattering
operator) into a series of Gamow vectors is presented.

KEY WORDS: resonances; Gamow vectors; Lax-Phillips scattering theory; Hardy
spaces.

1. INTRODUCTION

Hamiltonians H in Quantum Mechanics are semibounded, their absolutely
continuous part is nonnegative in general, the corresponding absolutely continuous
spectrum is the full half line [0,∞) and it is of constant multiplicity.

With regard to scattering problems this leads in many cases to the observation
that the scattering matrix, if analytically continuable at all, has a cut along the
negative real axis.

On the contrary, the evolutions occurring in the Lax-Phillips (LP-)scattering
theory have generators whose spectrum is pure absolutely continuous, coincides
with the real line and has constant multiplicity, such that also the LP-scattering
matrix is defined on the whole real line as a function of unitary operators on the
multiplicity Hilbert space.

In spite of this contrast the aim of the present paper is to discuss quantum
mechanical scattering from the Lax-Phillips point of view.
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We present this approach in two steps. In the first step it is assumed that there
is no cut. In this case there is a natural way to connect the quantum mechanical
scattering with LP-scattering by an extension procedure of the Hamiltonians. Then
the concepts and methods of the (slightly generalized) LP-theory can be applied.

In the second step the general case (there is a cut) is explained. The transfer
of the basic concepts and results from the first step to the general case can be
successfully implemented using the concept pairs of subspaces in generic position,
due to Halmos (1969). Decisive results for this topic were given by Kato (1976,
p. 56 ff.) (see also Baumgärtel et al., 2002, p. 4165 ff.).

A main result is the spectral characterization of the resonances, i.e. of the poles
of the scattering matrix. This result answers the question where the eigenvectors
of the resonances come from. It is obtained by the introduction of a truncated
evolution (cf. Skibsted, 1986, for example) which is a restriction of a characteristic
semigroup for t ≥ 0, given by the quantum mechanical evolution. The truncated
evolution has a pure and discrete eigenvalue spectrum which is contained in the set
of all poles of the scattering matrix and whose eigenvectors can be interpreted as
the Gamow vectors corresponding to these poles (for this denotation cf. Bohm and
Gadella, 1989, see also Skibsted, 1986; Gamow, 1928). Conditions are presented
such that every pole of the scattering matrix is an eigenvalue of the truncated
evolution.

The truncated evolution fails to be a semigroup, in general. However, simple
conditions are presented such that it satisfies the semigroup property.

A second result concerns the expansion of a significant part of vectors Sg, (S
the scattering operator) into a series of Gamow vectors.

2. PRELIMINARIES

2.1. Scattering Systems

A quantum mechanical scattering system {H,H0}, given on a Hilbert space
H, H the (selfadjoint) Hamiltonian, H0 the so-called unperturbed Hamiltonian,
is called asymptotically complete if the wave operators

W± := s-lim
t→±∞ eitH e−itH0P ac

0

are isometric from P ac
0 H onto P acH, where P ac, P ac

0 are the projections onto
the absolutely continuous subspaces of H,H0, respectively. Then the scattering
operator S := W ∗

+W− is unitary on P ac
0 H and commutes with the spectral measure

of H0.
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2.2. The Unperturbed Hamiltonian

In the following P ac
0 H =: H+

0 is assumed to be the Hilbert space H+
0 :=

L2([0,∞), dλ,K), where K is a finite-dimensional Hilbert space, describing the
multiplicity of the (pure absolutely continuous) spectrum of the multiplication
operator H+

0 on H+
0 . (For example, such Hilbert spaces occur in problems of

scattering by a spherically symmetric potential in R
3, where K denotes the mul-

tiplicity space of the angular momentum quantum number l ≥ 0. Also the finite-
dimensional Friedrichs model starts with a Hilbert space H := H+

0 ⊕ E where E is
finite-dimensional.) In this case, due to the commutation property of S mentioned
above, S is given by an operator function

[0,∞) � λ → S(λ),

a.e. defined, the so-called scattering matrix, where S(λ) is unitary on K.

2.3. The Inverse Theorem of the Scattering Theory

In the following systematic investigation the consequences of special ana-
lyticity conditions of S(·) are pointed out. The assumptions, to be presented in
the next subsection, are chosen as a consistent basis for several arguments which
are occasionally used in the resonance framework (see, for example, Bohm and
Gadella, 1989; Gadella, 1983 and other papers). To ensure that such additional
assumptions on S do not imply that there is no Hamiltonian H such that the scat-
tering system {H,H0} has the scattering operator S we quote a global existence
result, the so-called inverse theorem of the scattering theory.

Theorem 1. (Wollenberg) If S is unitary on H+
0 and commutes with the spectral

measure of H+
0 then there is always a selfadjoint operator H on a Hilbert space

H ⊇ H+
0 such that {H,H+

0 } is an asymptotically complete scattering system and
W ∗

+W− = S.

We note that H is not unique of a high degree. However, in the following
systematic analysis this fact plays no role (see Wollenberg, 1977 for details, see
also Baumgärtel and Wollenberg, 1983, p. 240 ff.).

2.4. Assumptions on the Scattering Matrix

Let C<0 := {z ∈ C : z 
= λ, λ ≤ 0} be the complex plane, cutted by the neg-
ative real axis. We assume that S(·) is analytically continuable into C<0 with the
following properties:

(i) S(·) is holomorphic for λ > 0,
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(ii) S(·) is meromorphic on C<0,
(iii) there exist the limits limε→+0 S(λ ± iε) =: S(λ ± i0) for λ < 0.

Note that the unitarity of S(·) on the positive real axis implies

S(z)−1 = S(z)∗, z ∈ C<0.

First implications are
(a) C<0 � z → S(z)−1 is also meromorphic , and ζ is a pole of S(·) iff ζ

is a pole of S(·)−1.
(b) S(λ − i0)∗ = S(λ + i0)−1 for λ < 0. This means that S(λ + i0) is

(bounded) invertible for λ < 0, but not necessarily unitary.
(c) The point z = 0 may be a branching point (even of infinite order),

but it cannot be a point with pole character, at most an essential
singularity is possible.
Concerning the behavior of S(·) at infinity we assume

(iv) S(·) is bounded at infinity, i.e. there are constants C > 0, R > 0 such that

‖S(z)‖ < C, |z| > R, z ∈ C<0.

Assumption (iv) ensures maximal transparency and smoothness in the pre-
sentation. However, (iv) is not indispensable (see e.g. Bohm and Gadella, 1989;
Gadella, 1983 and further papers, see also Strauss, 2003).

Simple examples for S(·) satisfying (i)–(iv) (for the scalar case K := C) are
given by

S(z) :=
r∏

j=1

z − ζ j

z − ζj

,

where the ζ1, ζ2, . . . , ζr ∈ C are non real (see e.g. Strauss, 2003, where Blaschke
products are mentioned). Another example, where a cut is present, is given by

S(λ) := exp

{
i

log λ

λ − 1

}
, λ > 0.

W.r.t. (iv) note that

|S(z)| ≤ exp

{
π |x − 1| + 1

2 |y| log(x2 + y2)

(x − 1)2 + y2

}
, z = x + iy.

On the boundary one has |S(λ ± i0)| = exp{∓ π
λ−1 }, λ < 0 and lim

λ→−∞
|S(λ ±

i0)| = 1. In this case z = 0 is an essential (branching) singularity.
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3. THE CASE THAT THERE IS NO CUT FOR THE SCATTERING
MATRIX

If additionally to the assumptions (i)–(iv) the condition

(v) S(λ − i0) = S(λ + i0), λ < 0,

is required then S(λ + i0) is unitary also for λ < 0, there is no cut and S(·) is a
unique meromorphic function on C \ {0} and bounded at infinity. The point z = 0
is either a holomorphic one or an essential singularity as the example S(z) :=
exp( i

z
) shows where | exp( i

λ
)| = 1 for λ real and λ 
= 0. Moreover exp( i

z
) → 1 for

|z| → ∞.
If z = 0 is a holomorphic point then S(·) is a rational function. (Note that

if (v) is required, z = 0 is holomorphic and (iv) is weakened to “polynomial
boundedness at infinity” then still one concludes that S(·) is rational and z = ∞
is even a holomorphic point.)

We consider the case “there is no cut” first because in this case there is a
very natural approach to apply the LP-theory using an extension procedure of the
scattering system in question. Scattering systems whose scattering matrices are
rational are instructive examples for this extension procedure.

Later on we introduce a natural transfer of the concepts and results of this case
to the more general case where there is a cut. The crucial method to implement the
transfer is given by the Halmos and Kato results mentioned in the introduction.

3.1. Extension Procedure

Let S(·) be a unique analytic function on C \ {0} equipped with the properties
(ii) and (iv), where S(·) on (0,∞) is the scattering matrix of an initial scattering
system {H+,H+

0 } where H+ is given onH+ ⊇ H+
0 . Then R \ {0} � λ → S(λ) is a

unitary operator function on K. Then, according to Wollenberg’s theorem, there is
an appropriate selfadjoint operator H on a Hilbert spaceH ⊇ H0 := L2(R, dλ,K)
such that {H,H0} is an asymptotically complete scattering system, where now H0

is the multiplication operator on the extended Hilbert space H0 and W ∗
+W− = S,

where S is the unitary operator on H0, given by the unitary operator function S(·)
on R. The restriction H E([0,∞))H, where E(·) denotes the spectral measure of

H , together with H0 H+
0 = H+

0 yields then an asymptotically complete scattering
system with the initial scattering matrix on (0,∞).

Note that H P acH is not necessarily an extension of H+ on P acH+ (the
absolutely continuous subspace of H+). However, the scattering operators of the

scattering systems {H E([0,∞))H,H+
0 } and {H+,H+

0 } coincide (recall that the
inverse problem has a vast set of solutions). That is, the emphasis is only that
the extension of the scattering matrix to the whole real line can be considered as
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the scattering matrix of a (new) scattering system w.r.t. the extended unperturbed
Hamiltonian. (Probably under the solutions of the inverse problem there is a
distinguished one whose restriction coincides with the initial scattering system,
but for the following considerations this has no relevance.)

3.2. Example: The One-Dimensional Perturbation

Let H0, H0 as in Subsection 3.1. Choose K := C (multiplicity one). Let
h ∈ H0, ‖h‖ = 1. Put

H := H0 + Ph,

where Phf := (h, f )h, f ∈ H0, is the one-dimensional projection onto Ch. Ob-
viously, {H,H0} is an asymptotically complete scattering system, the scattering
matrix, a scalar, is given by

S(λ) = ω(λ − i0)

ω(λ + i0)
, λ ∈ R,

where

ω(z) := 1 − (h, (z − H0)−1h), Im z 
= 0.

We choose

h(λ) := π−1/2 1√
λ2 + 1

.

Then one obtains

ω(λ ± i0) = λ − 1 ± i

λ ± i

and

S(λ) = λ2 − λ + 1 − i

λ2 − λ + 1 + i
.

H is pure absolutely continuous, i.e. {H,H0} on H0 is an extension of

{H E([0,∞))H0,H
+
0 }, where this scattering system plays the role of the ini-

tial scattering system. Note that S(·) has a pole ζ0 in the upper half plane,
ζ0 := 1

2

√
5(− sin φ0 + i cos φ0) where 0 < φ0 < π

4 .

4. FRIEDRICHS MODELS

Wollenberg’s theorem ensures the (abstract) existence of scattering systems
such that their scattering matrices satisfy the conditions of Subsection 2.4. In the
following we present several Friedrichs models on R and R+ := (0,∞) whose
scattering matrices realize these conditions. For convenience of the reader we
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recall basic facts on Friedrichs models. We choose the case R+, the case R is
formally similar.

4.1. The Friedrichs Model on R+, General Description

H+
0 and H+

0 are as before. Let E be a finite-dimensional Hilbert space,
dim E < ∞. Put H := H+

0 ⊕ E . The projections onto H+
0 and E are denoted

by P0, PE , respectively. Further choose a partial isometry � with �∗� = PE
and ��∗⊥PE and a selfadjoint operator E0 on E with spec E0 > 0. Then the
(selfadjoint) Hamiltonian is given by

H := (H0 ⊕ E0) + � + �∗.

The partial isometry � can be described by a matrix function M(·), a.e.
defined, where M(λ) ∈ L(E → K), and E � e → �e(λ) = M(λ)e. One has∫ ∞

0 M(λ)∗M(λ)dλ = 1lE and the adjoint �∗ is given by H0 � f → �∗f =∫ ∞
0 M(λ)∗f (λ)dλ ∈ E .

Since � + �∗ is finite-dimensional, the wave operators exist and are asymp-
totically complete, i.e.

W± := s-lim
t→±∞ eitH e−itH+

0 P0, W ∗
±W± = P0, W±W ∗

± = P ac
H .

We assume that all embedded eigenvalues of H+
0 ⊕ E0 are unstable, i.e. P ac

H =
1lH. S = W ∗

+W− is unitary and R+ � λ → S(λ) is a unitary operator function on
K. The scattering matrix can be calculated using the Livšic-matrix

L+(z) := (z − H+
0 )PE − �∗(z − H+

0 )−1�, Im z > 0,

where

�∗(z − H+
0 )−1� =

∫ ∞

0

M(λ)∗M(λ)

z − λ
dλ.

Recall that

(L+(z) E)−1 = PE (z − H )−1PE E .

The right hand side is called the partial resolvent. Therefore, the inverse of the
Livšic-matrix has no poles in C+. Moreover, since all embedded eigenvalues are
unstable, all poles are contained in C−. The scattering matrix is then given by

S(λ) = 1lK − 2iπM(λ)(L+(λ + i0) E)−1M(λ)∗, λ > 0.

This shows that the continuability of the scattering matrix into C<0 depends
strongly on the continuability of M(·). This will be illustrated by examples. Note
that one can distinguish between poles of S(·) due to the poles of the partial

resolvent, i.e. zeros of det(L+(z) E) in C− and poles due to M(·). The poles of the
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partial resolvent are special resonances. We do not distinguish between special
resonances and other ones.

4.2. A Friedrichs Model on R with Rational Scattering Matrix

The one-dimensional Friedrichs model on R is given by the Hamilto-
nian H := H0 + � + �∗ on the Hilbert space H := H0 ⊕ Ce, K := C, ‖e‖ =
1, H0e = λ0e, λ0 := 1, where �e =: f ∈ H0, ‖f ‖ = 1, �H0 = {0}. Choose
f (λ) := π−1/2(λ + i)−1. Then

(f, (z − H0)−1f ) =
{

(z + i)−1, z ∈ C+ := {z ∈ C : Im z > 0},
(z − i)−1, z ∈ C− := {z ∈ C : Im z < 0}

The Livšic-matrices on C+, C− are scalars, given by

µ+(z) = z − 1 − 1

z + i
, µ−(z) = µ+(z).

One has

µ−(λ) − µ+(λ) = − 2i

λ2 + 1

and the scattering matrix is given by

S(λ) = µ−(λ)

µ+(λ)
= 1l − 2i

(λ − i)(λ2 − λ(1 − i) − (1 + i))
,

S(·) is rational with two poles ζ± = 1−i
2 ±

√
1 + i

2 in C− and one pole ζ0 = i in
C+.

That is, if one starts with the scattering system {H E([0,∞))H,H0 H+
0 }

with the scattering operator S H+
0 then H realizes an extension such that {H,H0}

is a scattering system with the full scattering operator S.

4.3. A Friedrichs Model on R+ with Cut (−∞, 0) for The Scattering Matrix

Choose in Subsection 4.1 K := C, E := Ce, ‖e‖ = 1, λ0 = 1. Then M(·)
reduces to a function M(λ)e =: f (λ), f ∈ H+

0 . Choose

f (λ) := c
log λ

λ − 1
, λ > 0,

where c > 0 is the normalizing factor such that ‖f ‖ = 1. f is holomorphic con-
tinuable into C<0 by f (z) := c

log z

z−1 . On the negative real line one has the boundary
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values f (λ ± i0) = c
log |λ|±iπ

λ−1 . Obviously f is bounded on C<0. Putting

g+(z) :=
∫ ∞

0

|f (λ|2
z − λ

dλ, z ∈ C+,

(g− on C− is defined by the same formula), the Livšic-matrix on C+ is given by

µ+(z) = z − 1 − g+(z).

On C− we have µ−(z) = µ+(z). On R+ one has the relation

µ−(λ − i0) − µ+(λ + i0) = −2iπ |f (λ)|2, λ > 0.

The scattering matrix is given by

S(λ) = µ−(λ − i0)

µ+(λ + i0)
, λ > 0.

µ+ is holomorphic continuable across R+ into C−, i.e. it is a holomorphic function
as is µ−. The explicit formulas read

µ−(z) = µ+(z) − 2iπ

(
c log z

z − 1

)2

, z ∈ C+, (1)

µ+(z) = µ−(z) + 2iπ

(
c log z

z − 1

)2

, z ∈ C−. (2)

Therefore S(·) is continuable into C<0 by

S(z) := µ−(z)

µ+(z)
= 1 − 2iπ

(c log z)2

(z − 1)2µ+(z)
, z ∈ C<0. (3)

For the boundary values on R− := (−∞, 0) we obtain

S(λ + i0) = 1 − 2iπc2 (log |λ| + iπ )2

(λ − 1)2µ+(λ + i0)
, λ < 0,

S(λ − i0) = 1

1 + 2iπc2 (log |λ|−iπ)2

(λ−1)2µ−(λ−i0)

, λ < 0.

Note that µ+(λ + i0) = µ−(λ − i0) for λ < 0. A straightforward calculation
yields S(λ + i0) 
= S(λ − i0) for all λ < 0, i.e. R− is an actual cut for the scatter-
ing matrix.

Furthermore, S(·) is bounded at infinity. First we show that the functions g±
are bounded at infinity. Then formula (2) shows that g+ is bounded at infinity
on the whole region C<0. Using the decay properties of the integrand at infinity
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together with Cauchy’s theorem we have

c2
∫ 0

−∞

(log |λ| + iπ )2

(λ − 1)2(λ − z)
dλ + g+(z) = 2iπc2

(
log z

z − 1

)2

, z ∈ C+, (4)

(a similar relation is valid for g− on C−). Let a > 0 and put

A :=
∫ a

0

|f (λ|2
λ − z

dλ, B :=
∫ ∞

a

|f (λ|2
λ − z

dλ.

Then there are constants R > 0,K > 0 such that |A| < K for |z| > R. Put G :=
{z ∈ C : |z| > R}. Further choose 0 < δ < a and put Gδ := {z ∈ C : |z − λ| ≤
δ, a ≤ λ < ∞}. Then |B| < 1

δ
‖f ‖2 for z ∈ C \ Gδ . Then A + B is bounded on

G \ Gδ . Further there is 0 < γ < a − δ such that Re z > γ for all z ∈ Gδ hence
a fortiori for all z ∈ Gδ ∩ G. The formula (4) shows that B hence A + B is also
bounded on Gδ ∩ G. That is, A + B = g+(·) is bounded on G hence bounded at
infinity. The argument for g− is similar. Since

|µ+(z)| ≥ |z − 1| − |g+(z)| > b

with a constant b > 0 for sufficiently large |z|, we conclude that S(·) is bounded
at infinity.

By a slight modification of this model we can define a Friedrichs model on
R. Put f (·) for λ > 0 as before and

f (λ) := c
log |λ| + iπ

λ − 1
, λ < 0,

where c is again the (new) normalizing factor. In this case f (λ + i0) =
f (λ), f (λ − i0) = f (λ) for λ < 0. The scattering matrix of this model is (ac-
cording to Subsection 3.1) given by

S(λ) = 1 − 2iπ
|f (λ)|2
µ+(λ)

, λ ∈ R.

In this case the scattering matrix consists of two different analytic functions,
defined on R− and R+. Starting with the branch on R+, by analytic continuation
one arrives at the (existing) limits S(λ ± i0) for λ < 0, however these limits are
different and have nothing to do with the actual scattering matrix on the negative
half line.

This example shows that Friedrichs models on R whose scattering matrix on
R+ have the right properties of analytic continuation are not necessarily examples
for the extension procedure despite of the fact that there is a unitary scattering
matrix on the negative half line.
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5. EXTENDED SCATTERING SYSTEMS AND LP-EVOLUTIONS

If there is no cut for the scattering matrix such that the scattering system can
be extended according to 3.1, then a direct connection to the LP-theory can be
established. However, as the examples in 3.2 and 4.2 show (where there are poles in
the upper half plane), in general one has to take into account general LP-evolutions,
where not necessarily outgoing and incoming subspaces are orthogonal, because
this condition excludes poles in the upper half plane (see Remark 1 in 5.3.2).

5.1. LP-Evolutions

A unitary strongly continuous evolution group R � t → U (t) := exp(−itH )
on a Hilbert space H is called an LP-evolution if there are subspaces D+, D− in
H, called outgoing and incoming subspaces, such that

U (t)D+ ⊆ D+, t ≥ 0, U (t)D− ⊆ D−, t ≤ 0,

⋂

t∈R

U (t)D± = {0}, clo

{
⋃

t∈R

D±

}
= H,

(see Lax and Phillips, 1967). A simple example of an LP-evolution is the so-called
(standard) reference evolution. Let H0 := L2(R, dλ,K) as before and

(V (t)f )(x) := f (x − t), f ∈ H0, (5)

the regular translation group representation on H0. Let P± be the projections given
as the multiplication operators by χR± (·), where χ denotes the corresponding
characteristic function. Then P+H0, P−H0 are outgoing and incoming subspaces
for (5), respectively (for details of the reference evolution see e.g. Baumgärtel and
Wollenberg, 1983, p. 250 ff.).

The spectral representation of (5) is given by

V̂ (t) := FV (t)F−1 = e−itH0 ,

where F denotes the Fourier transformation on H0:

(Ff )(λ) := 1√
2π

∫ ∞

−∞
e−iλxf (x)dx.

That is, the generator of the spectral representation of the reference evolution is
the “unperturbed Hamiltonian” of an extended scattering system.

Correspondingly, the transformed outgoing/incoming subspaces of the refer-
ence evolution are given by the projections

Q∓ := FP±F−1.
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The Q± are the projections onto the so-called Hardy spaces Q±H0 =: H2
±. For

details on Hardy spaces see e.g. Baumgärtel, 2003. For example, Q+ is given by

(Q+g)(z) = 1

2iπ

∫ ∞

−∞

g(λ)

λ − z
dλ, g ∈ H0, z ∈ C+.

5.2. The Evolution R � t → exp(−i t H) for an Extended Scattering System
{H, H0}

Proposition 1. If {H,H0} is an extended scattering system then R � t →
exp(−itH ) is an LP-evolution.

Proof: One has to define outgoing/incoming subspaces. Let W± denote the wave
operators of the scattering system. Define

D− := W−H2
+, D+ := W+H2

−.

The corresponding projections read

D− = W−Q+W ∗
−, D+ = W+Q−W ∗

+.

It is an easy calculation to verify the conditions of 3.4.1. �

The representations

W ∗
+e−itH W+, W ∗

−e−itH W−,

which both coincide with exp(−itH0) are called outgoing/incoming spectral rep-
resentations of exp(−itH ), respectively. Note that in the outgoing spectral repre-
sentation D+ is transformed into H2

− and in the incoming spectral representation
D− is transformed into H2

+.

5.3. The Truncated Evolution for the Extended Scattering System

The spectral properties of the poles of S(·) become obvious and transparent if
one takes into consideration a so-called truncated evolution. Its eigenvalue spec-
trum is contained in the set of all poles of S(·) and the corresponding eigenvectors
appear as decaying states w.r.t. the truncated evolution.

As an essential first step to introduce the truncated evolution we study a
characteristic semigroup for t ≥ 0. It is already introduced in Strauss (2003). This
is already a step to give a first answer to the question where the eigenvectors of
the resonances come from.
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5.3.1 The characteristic semigroup

First we define the characteristic semigroup and present basic properties. We
define an operator T (t), t ≥ 0 on H by

T (t) := D⊥
+e−itH D⊥

+, t ≥ 0,

where we put D⊥
+ := 1l − D+. The transformation of T (t) into the outgoing spec-

tral representation yields

T+(t) := W ∗
+T (t)W+ = Q+e−itH0Q+, t ≥ 0.

It is obvious that T+(·), hence also T (·), is a semigroup for t ≥ 0, because

eitH0Q+ = Q+eitH0Q+, t ≥ 0

(note that Q+ is the incoming projection), hence

Q+e−itH0 = Q+e−itH0Q+, t ≥ 0

and this implies

Q+e−it1H0Q+ · Q+e−it2H0Q+ = Q+e−i(t1+t2)H0Q+, t1, t2 ≥ 0.

Since T+(t) vanishes on H2
−, we put

T+(t) H2
+ =: e−itC+ , t ≥ 0,

where C+ denotes the generator of the restricted semigroup. This semigroup we
call the characteristic semigroup.

Proposition 2. The characteristic semigroup T+(·) H2
+ has the following prop-

erties:

(i) It is strongly continuous and contractive, the generator C+ is closed on
H2

+ and dom C+ is dense.
(ii)

(T+(t)f )(z) = 1

2iπ

∫ ∞

−∞

e−itλ

λ − z
f (λ)dλ, f ∈ H2

+.

(iii)

dom C+ = {f ∈ H2
+ : gf ∈ H2

+,

where gf (z) := zf (z) − i√
2π

lim
x→−0

(F−1f )(x)}

and

(C+f )(z) = gf (z).
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(iv) s-limt→∞ T+(t) = 0.

A proof can be found in Baumgärtel (2004). Second we mention the spectral
theory of the characteristic semigroup.

Proposition 3. Let T+(t) H2
+ = Q+e−itH0 H2

+, t ≥ 0, as before. Then

(i) res C+ = C+.

(ii) The eigenvalue spectrum of C+ coincides with C−, i.e. a real point cannot
be an eigenvalue.

(iii) The eigenspace of the eigenvalue ζ ∈ C− is given by the following subspace

Nζ :=
{

f ∈ H2
+ : f (z) := k

z − ζ
, k ∈ K

}
.

Then

T+(t)f = e−itζ f, f ∈ Nζ

follows.

A proof can be found in Baumgärtel (2004).

5.3.2. The truncated evolution for commuting outgoing/incoming projections

In order to prepare the spectral characterization of the poles of S(·) we con-
sider the special case that the projections D+ and D− commute and introduce the
truncated evolution in this case. This special case is an important intermediate step
to connect mathematical (quantum mechanical) scattering theory with LP-ideas
for two reasons. First this case is yet typical LP, because the crucial restriction (6)
of the characteristic semigroup to the subspace H2

+ ∩ (SH2
+)⊥ is again a semi-

group, so to say the LP-semigroup in the case in question. Second already in
this case there is a decoupling of the restriction procedure from the analytical
implications which follow in the case that outgoing and incoming subspaces are
orthogonal (which is a special case of the case of commuting projections, see
Remark 1 in 5.3.2). The decisive step is a modification (resp. further restriction)
of the semigroup T (·) in the case D+D− = D−D+. Recall that

T (t) = D⊥
+e−itH D⊥

+ = D⊥
+e−itH , t ≥ 0,

which is due to the relation exp(−itH )D+ = D+ exp(−itH )D+ for t ≥ 0, which
is true because D+ is the outgoing projection. We restrict this semigroup further
and define

Y (t) := D⊥
+e−itH D⊥

−, t ≥ 0.
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A straightforward calculation gives

Y (t) = W+Q+e−itH0SQ−W ∗
−,

i.e. the transformation into the outgoing spectral representation yields

Y+(t) = W ∗
+Y (t)W+ = Q+e−itH0Q+ · SQ−S∗.

Lemma 1. The following relations are equivalent:

(i) D+D− = D−D+,

(ii) Q−SQ+ = SQ+S∗Q−S,

(iii) Q+ · SQ−S∗ = SQ−S∗ · Q+.

Moreover D+D− = 0 iff Q−SQ+ = 0.

Proof: Straightforward calculation. �

That is, the projections D+ and D− commute iff the projections Q+ and
SQ−S∗ commute. We obtain

Theorem 2. If D+ and D− commute then Y+(·) hence Y (·) is a semigroup for
t ≥ 0.

Proof: We calculate

Y+(t1)Y+(t2) = Q+e−it1H0Q+SQ−S∗Q+e−it2H0Q+SQ−S∗

= Q+e−it1H0SQ−S∗e−it2H0SQ−S∗

= Q+Se−it1H0Q−e−it2H0Q−S∗

= Q+Se−it1H0e−it2H0Q−S∗

= Q+e−i(t1+t2)H0Q+ · SQ−S∗

= Y+(t1 + t2).

�

Note that Q+ · SQ−S∗ is the projection of the subspace Q+H0 ∩ SQ−H0

hence we obtain

Q+SQ−S∗H0 = Q+H0 ∩ SQ−H0 = H2
+ ∩ SH2

−

= H2
+ ∩ S(H2

+)⊥ = H2
+ ∩ (SH2

+)⊥.

This means: the elements of this subspace are exactly those vectors f ∈ H2
+ which

are orthogonal w.r.t. SH2
+, i.e. f ⊥SH2

+.
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According to Theorem 2 this subspace is invariant w.r.t. the semigroup Y+(·).
Moreover the semigroup vanishes on the orthogonal complement. The restriction

Z+(t) := Y+(t) H2
+ ∩ (SH2

+)⊥, t ≥ 0 (6)

is a strongly continuous contractive semigroup which is a restriction of the char-

acteristic semigroup T+(·) H2
+. This restriction we call the truncated evolution

which is again a semigroup in this case.

Remark 1. If even D+D− = 0, i.e. D+ and D− are orthogonal then Lemma 1
yields Q−SQ+ = 0 or, equivalently, SQ+ = Q+SQ+. This means SH2

+ ⊆ H2
+.

In this case we obtain

H2
+ ∩ (SH2

+)⊥ = H2
+ � SH2

+,

i.e. in this case Z+(·) acts on H2
+ � SH2

+ and it is nothing else than the so-called
Lax-Phillips semigroup.Further it turns out that in this case S(·) is holomorphic in
C+ with supz∈C+ ‖S(z)‖ ≤ 1 such that S(λ) = s-limε→+0 S(λ + iε).

Next we study the spectral theory of the truncated evolution Z+(·). Recall that
it is a restriction of the characteristic semigroup whose spectral theory is already
known. Therefore, in view of the problem to characterize the eigenvalue spectrum
of Z+(·) the crucial question is: Which eigenvalues of the characteristic semigroup,
i.e. of T+(·) on H2

+, survive the restriction to the subspace H2
+ ∩ (SH2

+)⊥? That
is, for fζ,k ∈ Nζ , ζ ∈ C−, i.e.

fζ,k(λ) := k

λ − ζ
, 0 
= k ∈ K,

one has to analyze the condition

fζ,k⊥SH2
+. (7)

Note that (7) means that S∗fζ,k ∈ H2
−. We have

(S∗fζ,k)(λ) = S(λ)∗fζ,k(λ) = S(λ)∗k
λ − ζ

= S(λ)−1k

λ − ζ
,

i.e. in any case the vector function

C � z → (S∗fζ,k)(z) = S(z)−1k

z − ζ
(8)

is meromorphic on C \ {0}. Therefore, a necessary condition for the survival of
an eigenvalue ζ ∈ C− is the following one:

(*) There exists 0 
= k ∈ K such that the vector function (8) is holomorphic in
C−.
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Proposition 4. If condition (*) is satisfied, i.e. there is 0 
= k ∈ K such that the
vector function (8) is holomorphic in C− then ζ is a pole of S(·) or ζ is a pole of
S(·).

Proof: First, if ζ is a holomorphic point for S(·)−1 then one has S(ζ )−1k =
S(ζ )∗k = 0, i.e. S(ζ )∗ is not invertible, which implies that ζ is necessarily a pole
of S(·), because in the contrary one gets S(ζ ) = (S(ζ )∗)−1, a contradiction.

Second, if ζ is a pole of S(·)−1 then ζ is a pole of S(·) anyway. �

Proposition 5. Assume that fζ,k satisfies the condition (*). Then S∗fζ,k ∈ H2
−.

Proof: Let CR ⊂ C be the negatively oriented path consisting of the interval
−R ≤ λ ≤ R and the semicircle CR,− := {z ∈ C− : |z| = R}. Then for all R > 0
we have

∫

CR

(S∗fζ,k)(λ)

λ − z
dλ = 0, z ∈ C+.

Recall that

Q+S∗fζ,k(z) = 1

2iπ

∫ ∞

−∞

(S∗fζ,k)(λ)

λ − z
dλ

= 1

2iπ

∫ ∞

−∞

S(λ)−1k

(λ − ζ )(λ − z)
dλ, ζ ∈ C−, z ∈ C+.

Further we have∥∥∥∥∥

∫

CR,−

S(ξ )−1k

(ξ − ζ )(ξ − z)
dξ

∥∥∥∥∥ ≤ C‖k‖
∫

CR,−

|dξ |
|ξ − ζ | · |ξ − z| → 0, R → ∞.

This implies
∫ ∞

−∞

S(λ)−1k

(λ − ζ )(λ − z)
dλ = 0

or S∗fζ,k ∈ H2
−. �

According to Propositions 4 and 5 for the survival of the eigenvector fζ,k

in the case that ζ ∈ C−, where ζ or ζ is a pole of S(·)−1 one has to analyze the
condition (*). At every point ζ ∈ C− such that ζ is a pole of S(·)−1 or ζ is a pole
of S(·) there is a Laurent expansion of S(·)−1

S(z)−1 =
∞∑

n=−m(ζ )

(z − ζ )nAn,ζ . (9)

which is possibly a power series if ζ is a holomorphic point of S(·)−1.
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Proposition 6. Let the coefficients An,ζ be as in (9). Then S∗fζ,k is holomorphic
at ζ iff

An,ζ k = 0 for all n = −m(ζ ),−m(ζ ) + 1, ...,−1, 0.

Proof: Obvious. �

Remark 2. We mention once more the special case in the LP-theory, where
outgoing and incoming subspaces are orthogonal. Then S(·) is holomorphic in C+
and there are no poles of S(·)−1 in C−, i.e. it remains to consider the case where ζ

is a holomorphic point of S(·)−1, i.e. it remains the condition S(ζ )∗k = 0. In this
case one can also use the following argument: One has Su ∈ H2

+ if u ∈ H2
+ and

one can use the identity

(fζ,k, Su) = (k, S(ζ )u(ζ ))K,

according to the Paley-Wiener theorem for C+.
Under the assumptions of this section the spectrum of the truncated evolution

(which is a semigroup in this case) is a pure eigenvalue spectrum and H2
+ ∩

(SH2
+)⊥ is spanned by the set of all surviving eigenvectors fζ,k .

5.4. The Truncated Evolution in the General Case

If D+ and D− do not commute then the restriction Y (·) of the semigroup T (·)
resp. its transformation Y+(·) into the outgoing spectral representation fails to be
a semigroup. Nevertheless, we we can restrict Y+(·) to H2

+ ∩ (SH2
+)⊥. Note that

the projection onto this subspace is given by s-limn→∞(Q+SQ−S∗)n. Also in this
case we call

T+(t) H2
+ ∩ (SH2

+)⊥ =: Z+(t), t ≥ 0,

the truncated evolution which is not a semigroup. Similarly as before, we can pose
again the question which eigenvalues of the characteristic semigroup survive this
restriction, i.e. we arrive at the same problem, to analyze the condition f ⊥SH2

+,
as before. Therefore, we can transfer the results of Section 3.5.2 (Propositions 4,5
and 6) to the general case. That is, the eigenvalue ζ ∈ C− and a corresponding
eigenvector fζ,k survive the restriction if ζ is a pole of S(·) or S(·)−1 and S∗fζ,k is
holomorphic in C− (see Proposition 6).

In spite of the lack of the semigroup property for the truncated evolution
Z+(·) we obtain for the surviving eigenvalues ζ and corresponding eigenvectors
fζ,k again

Z+(t)fζ,k = e−itζ fζ,k, t ≥ 0,
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i.e. restricted to the span of all (surviving) eigenvectors the semigroup property
of Z+(·) remains valid. Note that this span is finite-dimensional if S(·) has only
finitely many poles.

The eigenvectors of the truncated evolution we call Gamow vectors (see the
quotations in Section 1).

6. THE CASE OF A CUT FOR THE SCATTERING MATRIX

If (−∞] is an actual cut for the scattering matrix S(·) on C<0 then the
extension idea does not work because S(·) cannot be extended to a unitary operator
function on the whole real line in a natural way. Therefore we can work only
with the “physical” Hilbert space H+

0 = P+H0 for the unperturbed Hamiltonian

H+
0 = H0 P+H0.

The results of Section 3 suggest that the Hardy spaces, resp. their projections
Q± should be crucial concepts also for the case of the existence of a cut. Therefore
the claim is to bring the Hardy spaces into the game in this case. This can be done
by application of ideas and results of Halmos and Kato to the case of the pairs
{P+,Q+} and {P+,Q−} (see the quotations in Section 1).

6.1. Pairs of Projections in Generic Position

Definition 6.3. Let P,Q be projections on a Hilbert space H. Then the subspaces
PH,QH are called subspaces in generic position if

PH ∩ QH = PH ∩ Q⊥H = P ⊥H ∩ QH = P ⊥H ∩ Q⊥H = {0}.
Note that for arbitrary projections P,Q one has

‖P − Q‖ ≤ 1

because (P − Q)2 + (1 − P − Q)2 = 1l.

Theorem 3. Let P,Q be projections of subspaces in generic position. Then

(i) the linear manifold M := PQH ⊂ PH is dense in H (w.r.t. the Hilbert
space topology of H).

(ii) The projection P on QH is bijective, i.e. the inverse operator P −1 exists
on M.

(iii) If ‖P − Q‖ < 1 then M = PH and P −1 is continuous on PH.
(iv) If δ := ‖(11 − P )Q‖ < 1 then ‖P − Q‖ = δ.
(v) If ‖P − Q‖ = 1 then P −1 is closed and unbounded on PH and

dom P −1 = M is properly dense in PH.
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Obviously the pairs {P+,Q+}, {P+ Q−} resp. their corresponding subspaces

{P+H0, Q+H0}, {P+H0, Q−H0}
ofH0 are pairs of subspaces in generic position as it can be shown easily. Moreover
in this case M± := P+Q±H0 is properly dense in P+H0. Therefore all results for
such pairs can be used in the present context. A proof can be found in Kato (1976)
or in Baumgärtel et al. (2002). For convenience of the reader we sketch briefly
essential arguments.

Proof of Theorem 3: (i) and (ii): Straightforward calculation.
(iii): One has δ := ‖(1l − P )Q‖ = ‖Q − PQ‖ = ‖(Q − P )Q‖ ≤ ‖Q −

P ‖ < 1. Let f ∈ QH. Then ‖f ‖ − ‖Pf ‖ ≤ ‖f − Pf ‖ = ‖(1l − P )Qf ‖ ≤
δ‖f ‖ or ‖Pf ‖ ≥ (1 − δ)‖f ‖, i.e. P −1 is continuous on QH.

(iv): See Kato (1976, p. 57). (v): ‖P − Q‖ = 1 implies δ = 1. Put Q := QH
and A := QP ⊥Q Q. Then spr A = ‖A‖ = ‖QP ⊥P ⊥Q‖ = ‖P ⊥Q‖2 = δ2 = 1,
hence 1 ∈ spec A follows, but 1 is not an eigenvalue of A because Aq = q implies
s-limn→∞(QP ⊥)nq = q, i.e. q ∈ Q ∩ P ⊥H = {0} and ker (1lQ − A) = {0}. This
means (1lQ − A)−1 exists and it is unbounded because 1 /∈ res A. That is, D :=
dom (1lQ − A)−1 is a proper dense set in Q and ima (1lQ − A) = D = ima (Q −
QP ⊥Q) = ima QPQ. The polar decomposition of PQ reads PQ = sgn (PQ) ·
(QPQ)1/2. sgn PQ maps ima (QPQ)1/2 isometrically onto ima PQ = PQH
hence PQH is a proper dense set in PH. That is, P QH is unbounded invertible.
�

Applying Theorem 3 to the projections P+,Q± on H0 means: the projection
P+ is a linear bijection of H2

± onto M± which is properly dense in P+H0,

H2
± � f ↔ f+ := P+f ∈ M± = P+H2

± ⊂ P+H0. (10)

Therefore we can introduce a new scalar product in M±,

〈f+, g+〉 := (f, g), f, g ∈ H2
±

with the corresponding norm

[f+]2 := ‖f ‖2 = ‖f+‖2 + ‖f−‖2, (11)

where f− := P−f, P− = 1l − P+, i.e. one has

‖f+‖ ≤ [f+].

W.r.t. the (new) norm (11) the linear manifoldsM± are Hilbert spaces and because
of (11) the linear bijection given by (10) turns out to be isometric.
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6.2. The Characteristic Semigroup

Recall that the characteristic semigroup T+(·) H2
0 of Section 3 is the trans-

formation of the semigroup T (·) D⊥
+ into the outgoing spectral representation

(see 3.5.1). By the results of 4.1 now it can be transferred to M+.

Proposition 7. The assignment

t → T P
+ (t) := P+T+(t)P −1

+ , t ≥ 0, (12)

where P+T+(t)P −1
+ is a linear operator from M+ into M+, is a semigroup which

is even strongly continuous w.r.t. the (new) Hilbert space topology of M+ and
T P

+ (0) = 11M+ .

Proof: Obvious. �

The semigroup (12) is the natural counterpart of the characteristic semigroup

in the present case, where there is a cut. The counterpart of T (·) D⊥
+ is then given

by transformation using the wave operator W+. Recall that the wave operators W±
are defined (and isometric) on P+H0 ⊃ M±, i.e. the assignment

M+ � u → W+u ∈ P acH (13)

is a bijection, hence we may transfer the (new) Hilbert space norm of M+ to
W+M+ by the definition

〈W+f+,W+g+〉W+M+ := 〈f+, g+〉, f+, g+ ∈ M+. (14)

Then the assignment (13) becomes an isometry from M+ onto W+M+ and
we obtain

Proposition 8. The assignment

t → W+T P
+ (t)W ∗

+, t ≥ 0, (15)

where W+T P
+ (t)W ∗

+ is a linear operator from W+M+ into W+M+, is a semigroup
which is even strongly continuous w.r.t. the (new) Hilbert space topology (14) of
W+M+.

The proof is obvious. These propositions imply that the spectral theory of the
characteristic semigroup, developed in 3.5.1, can be completely transferred to the
semigroups (12) and (15).

Corollary 1. The semigroup (15) resp. its generator has a pure eigenvalue
spectrum which coincides with C−. The eigenspace Eζ for ζ ∈ C− is given by
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Eζ := W+P+Nζ , i.e. the eigenvectors are eζ,k := W+P+fζ,k , where

P+fζ,k(λ) = χ[0,∞)(λ)
k

λ − ζ
.

6.3. The Truncated Evolution

Recall that in the present case the scattering operator S, given a priori on H+
0

by the scattering matrix λ → S(λ), λ > 0, can be extended to a bounded operator
on H0 in two ways by the continuation of S(·) using the limits of S(·) on the
negative real axis (see 2.4). We put s- lim

ε→±0
S(λ ± iε) =: S±(λ) for λ < 0. Then

S± is defined for f ∈ H0 by

(S±f )(λ) =
{

S(λ)f (λ) if λ > 0,

S±(λ)f (λ) if λ < 0.

Note that S± is not unitary on H0 but bounded invertible.
Recall further that in 3.5.2 and 3.5.3 the truncated evolution of the charac-

teristic semigroup is defined by its restriction to the subspace H2
+ ∩ (SH2

+)⊥ =
H2

+ ∩ SH2
−. In the present case the characteristic semigroup T P

+ (·) is defined
on M+. To define the truncated evolution we have to restrict the characteristic
semigroup to

P+(H2
+ ∩ S±H2

−) ⊆ P+H2
+ ∩ P+(S±H2

−) = P+H2
+ ∩ SP+H2

− = M+ ∩ SM−,

i.e. the restriction is independent of the ambiguity that the continuation of the
scattering matrix to the negative half line is not unique. The truncated evolution
is then defined by

t → T P
+ (t) P+(H2

+ ∩ S±H2
−), t ≥ 0. (16)

If H2
+ ∩ S±H− ⊃ {0} then also P+(H2

+ ∩ S±H2
−) ⊃ {0}.

For example, if in the “no cut case” D+D− = 0, i.e. SH2
+ ⊆ H2

+, and H2
+ ∩

SH2
− = {0}, such that SH2

+ = H2
+ follows then one obtains that S(·) has no poles

in C \ {0}. In the “rational case” this means S = 1l.
The spectral theory of (16) can be immediately traced back to that of the

truncated evolution in 3.5.3 (and 3.5.2, in particular see Proposition 6).

Corollary 2. The eigenvalue ζ ∈ C− and a corresponding eigenvector P+fζ,k

of the characteristic semigroup T P
+ (·) M+ survive the restriction (16) iff ζ is a

pole of S(·) or S(·)−1 and S∗fζ,k is holomorphic in C−.
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Proof: The condition for survival of P+fζ,k reads S−1P+fζ,k ∈ M− or
P −1

+ S−1P+fζ,k ∈ H2
−. Now

(S−1P+fζ,k)(λ) = χ[0,∞)(λ)
S(λ)−1k

λ − ζ

and

(P −1
+ S−1P+fζ,k)(λ) = S(λ)−1k

λ − ζ
.

That is, we arrive at the same conditions as in 3.5.2. �

7. EXPANSION OF VECTORS FROM Q+S−H2− IN A SERIES
OF GAMOW VECTORS

In this section we require that S(·) has only finitely many poles in C<0

(cf. condition (ii) in 2.4). First recall that P+H2
− is dense in P+H0, i.e. each

vector u ∈ P+H0 can be approximated by a vector P+g where g ∈ H2
− such that

‖u − P+g‖ is arbitrary small. Then an expansion of Q+SP+g is an approximation
for the vector Q+Su.

Theorem 4. Let g ∈ H2
− and S− be the operator of 4.3. Then there is an expan-

sion of Q+S−g into a series of Gamow vectors

(Q+S−g)(z) =
r∑

j=1

S−1,j g(ζj )

z − ζj

, z ∈ C+,

where the ζj ∈ C− run through all poles of S(·) in C− and where S−1,j denotes
the residuum of S(·) at ζj .

Proof: Let f ∈ H2
+ be arbitrary and put

F (z) := (f (z), S(z)g(z))K, z ∈ C− ∪ R.

Consider the positively oriented path C in C consisting of two pieces C = C0 ∪ C1,
where C0 := [−R,R], R > 0 and C1 consists of the following three segments:

C1,1 := {−R − iy : 0 ≤ y ≤ δ},

C1,2 := {x − iδ : −R ≤ x ≤ R},

C1,3 := {R − iy : 0 ≤ y ≤ δ},
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where δ > 0. Then
∫

C
F (z)dz = −

∫ R

−R

F (λ)dλ +
∫

C1

F (z)dz = 2iπ ResC− F (·),

if R and δ are sufficiently large. The integral
∫
C1

is estimated as follows, according
to the adaption of an argument of Yosida (1971, p. 163 ff.). First we have

∣∣∣∣
∫

C1

(f (z), S(z)g(z))Kdz

∣∣∣∣ ≤ C

∫

C1

‖f (z)‖ · ‖g(z)‖ · |dz|

≤ C

(∫

C1

‖f (z)‖2|dz|
)1/2 (∫

C1

‖g(z)‖2|dz|
)1/2

.

We consider the first integral (the second one can be treated similarly). The
complex conjugated path C1 consists of three parts, so we have to estimate

∫ δ

0
‖f (−R + iy)‖2dy +

∫ R

−R

‖f (x + iδ)‖2dx

+
∫ δ

0
‖f (R + iy)‖2dy = A + B + C. (17)

First note that
∫ ∞

−∞
‖f (x + iδ)‖2dx =

∫ ∞

0
e−2pδ‖f̂ (−p)‖2dp, (18)

where f̂ is the Fourier transform of f . Equation (18) shows that the integral on
the left hand side is sufficiently small if δ is large enough.

Second, to each δ > 0 there is a sequence Rn → ∞ such that

lim
n→∞

∫ δ

0
‖f (±Rn + iy)‖2dy = 0,

because in the contrary case there is δ0 > 0 and R0 > 0 and a constant b > 0 such
that for all |x| ≥ R0

∫ δ

0
‖f (x + iy)‖2dy ≥ b

hence
∫

|x|≥R0

{∫ δ

0
‖f (x + iy)‖2dy

}
dx = ∞

which is a contradiction to
∫ ∞

−∞

{∫ δ

0
‖f (x + iy)‖2dy

}
dx =

∫ δ

0

{∫ ∞

−∞
‖f (x + iy)‖2dx

}
dy < ∞.
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Now choose first δ > 0 large such that B is small (uniformly for all R > 0). To
this δ there corresponds a sequence Rn → ∞. Then lim

n→∞ A = lim
n→∞ C = 0, this

implies that (17) is sufficiently small and we obtain

lim
R→∞,δ→∞

∫

C1

F (z)dz = 0

and
∫ ∞

−∞
(f (λ + i0), S−(λ)g(λ − i0))Kdλ = −2iπ ResC− F (·).

Now the coefficient of (z − ζ )−1
j in the Laurent expansion of F (·) at ζj reads

(f (ζj ), S−1,j g(ζj ))K, where S−1,j is that coefficient for S(·). Then we obtain

ResC− F (·) =
r∑

j=1

(f (ζj ), S−1,j g(ζj ))K.

Now a well-known Hardy space theorem says that

−(f (ζj ), S−1,j g(ζj ))K = 1

2iπ

∫ ∞

−∞

(
f (λ + i0),

S−1,j g(ζj )

λ − ζj

)

K
dλ.

This gives

∫ ∞

−∞
(f (λ + i0), S−(λ)g(λ − i0))Kdλ =

∫ ∞

−∞

⎛

⎝f (λ + i0),
r∑

j=1

S−1,j g(ζj )

λ − ζj

⎞

⎠

K

dλ

or

∫ ∞

−∞

⎛

⎝f (λ + i0), S−(λ)g(λ − i0) −
r∑

j=1

S−1,j g(ζj )

λ − ζj

⎞

⎠

K

dλ = 0.

Since f ∈ H2
+ is arbitrary this implies that the function

R � λ → S−(λ)g(λ) −
r∑

j=1

S−1,j g(ζj )

λ − ζj

is orthogonal to H2
+ hence an element of H2

−. However, the part

λ →
r∑

j=1

S−1,j g(ζj )

λ − ζj

is from H2
+. This yields the assertion. �



1984 Baumgärtel

Remark 4. From the proof of Theorem 4 we extract the relation

(f, S−g) =
∫ 0

−∞
(f (λ + i0), S−(λ)g(λ − i0))Kdλ

+
∫ ∞

0
(f (λ + i0), S(λ)g(λ − i0))Kdλ

= −2iπ

r∑

j=1

(f (ζj ), S−1,j g(ζj ))K.

Since the physical transition probability from the state SP+g to the state P+f

is given by the modulus square of

(P+f, SP+g) =
∫ ∞

0
(f (λ + i0), S(λ)g(λ − i0))Kdλ,

we obtain

(P+f, SP+g) = −2iπ

r∑

j=1

(f (ζj ), S−1,j g(ζj ))K

−
∫ 0

−∞
(f (λ + i0), S−(λ)g(λ − i0))Kdλ,

i.e. this term is given by the sum of a residual term and a so-called background
integral due to the “virtual” negative energies.

8. CONCLUSIONS

The presented results suggest their application to scattering systems with
embedded eigenvalues of the unperturbed Hamiltonian, e.g. Friedrichs models
with special resonances (non real zeros of the determinant of their Livšic-matrix
(see Section 4, see also Baumgärtel, 2003). Note that for these resonances eigen-
functionals w.r.t. the Hamiltonian can be constructed (see Baumgärtel, 2003;
Baumgärtel, 1976). It would be nice to clarify the connection between these
eigenfunctionals and the Gamow vectors in that case.
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Baumgärtel, H., Jurke, M., and Lledò, F. (2002). Twisted duality of the CAR-algebra. Journal of
Mathematical Physics 43(8), 4158–4179.

Bohm, A. and Gadella, M. (1989). Dirac Kets, Gamow vectors and Gelfand Triplets, Lecture Notes in
Physics 348, Springer Verlag.

Gadella, M. (1983). A rigged Hilbert space of Hardy class functions: Application to resonances.
Journal of Mathematical Physics 24(6), 1462–1469.

Gamow, G. (1928). Zur Quantentheorie des Atomkernes. Zeitschrift Fur Physik 51, 204–212.
Halmos, P. R. (1969). Two subspaces. Transactions of the American Mathematical Society 144, 381–

389.
Kato, T. (1976). Perturbation Theory for Linear Operators, Springer Verlag Berlin.
Lax, P. D. and Phillips, R. S. (1967). Scattering Theory, Academic Press, New York.
Skibsted, E. (1986). Truncated Gamow Functions, α-decay and the Exponential Law. Communications

in Mathematical Physics 104, 591–604.
Strauss, Y. (2003). Resonances in the Rigged Hilbert Space and Lax-Phillips Scattering Theory.

International Journal of Theoretical Physics 42(10), 2285–2317.
Wollenberg, M. (1977) On the inverse problem in the abstract theory of scattering, ZIMM-Preprint

Akad. Wiss. DDR, Berlin.
Yosida, K. (1971). Functional Analysis, Springer Verlag Berlin.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


